Showing posts with label Sofosbuvir. Show all posts
Showing posts with label Sofosbuvir. Show all posts

Monday 5 October 2015

(WO2015139602) Sofosbuvir New Patent

(WO2015139602) 2'-SUBSTITUTED-2,2'-DEHYDRATED URIDINE OR 2'-SUBSTITUTED-2,2'-DEHYDRATED CYTIDINE COMPOUND AND PREPARATION METHOD AND USE THEREOF
ZHANG, Rongxia
A further object of the present invention to provide a method for preparing a compound of formula I.

The present invention provides a process for preparing a compound I 2'-deoxy-2'-fluoro-2'-substituted uridine or 2'-deoxy-2'-fluoro-cytidine using the following formula or 2'-deoxy-2'-substituted 2'-2'-substituted nitrile or uridine 2'-deoxy-2'-substituted-2'-carbonitrile The method of cytidine compound,

2'-deoxy-2'-fluoro-2'-methyl-uridine (IIIa) is the preparation of anti-hepatitis C drugs Sofosbuvir key intermediate.
Sofosbuvir developed by Gilead Science Company, FDA on December 6, 2013 Sofosbuvir formally approved for the treatment of chronic hepatitis C virus (HCV) infection. Sofosbuvir is first used to treat certain types of HCV infection without the use of interferon effective and safe drugs. Clinical trials have shown, sofosbuvir can achieve very high proportion of sustained virologic response (clinical cure). More revolutionary breakthrough that, sofosbuvir without joint peginterferon α situation is still very significant effect, such as sofosbuvir ribavirin genotype 2 and genotype 3 patients with previously untreated chronic hepatitis C continued virological response rate of 100%. Sofosbuvir is a prodrug is metabolized in vivo to 2'-deoxy-2'-fluoro-2'-methyl-uridine-5'-monophosphate.
Currently reported 2'-deoxy-2'-fluoro-2'-methyl uridine synthetic methods are as follows:

In the literature (Journal of Medicinal Chemistry, 2005,48,5504) in order cytidine as a raw material, first selectively protected 3 ', 5'-hydroxyl group, and then oxidizing the 2'-hydroxyl to a carbonyl group, and the reaction of methyllithium get the 2'-hydroxyl compound, and then removing the protective group, use benzoyl protected 3 ', 5'-hydroxyl group, and then reacted with DAST fluorinated compound, followed by hydrolysis and aminolysis reaction products, such as the following Reaction Scheme. The method of route length, the need to use expensive silicon ether protecting group molecule relatively poor economy; conducting methylation time will generate a non-methyl enantiomer beta bits.




In Patent (WO2005003147, WO2006031725A2, US20040158059) using 2'-fluoro-2'-methyl - ribose derivative with N- benzoyl cytosine for docking the reaction, then after the hydrolysis, aminolysis reaction to obtain the final product, As shown in the following reaction scheme. Raw material of the process is not readily available, synthetic steps cumbersome, expensive; the reaction product obtained contained docking base for the alpha position isomers, need purification removed to form waste.


SUMMARY OF THE INVENTION

The present inventors have designed and synthesized a compound of formula I as shown, the compound may be a fluorinated or nitrile reaction of 2'-deoxy-2'-fluoro-2'-get-substituted uridine or 2 under appropriate conditions' - 2'-deoxy-2'-fluoro-2'-deoxy-2'-substituted cytidine or nitrile uridine or 2'-substituted-2'-deoxy-2'-substituted-2'-cytidine nitrile compound; or a compound of formula I or a nitrile group by fluoro reaction, followed by deprotection reaction to give 2'-deoxy-2'-fluoro-2'-substituted uridine or 2'-deoxy-2'-fluoro--2 '- cytidine or 2'-substituted-2'-deoxy-2'-nitrile-substituted uridine or 2'-deoxy-2'-substituted-2'-cytidine compound nitrile group; or a compound of formula I through the opening cyclization reaction, and then through the group of fluoro or nitrile, and finally deprotection reaction to give 2'-deoxy-2'-fluoro-2'-substituted uridine or 2'-deoxy-2'-fluoro-2'-substituted Cellular glycoside or 2 'substituted-2'-deoxy-2'-carbonitrile 2'-deoxy-uridine or 2'-substituted-2'-cytidine compound nitrile group; or a compound of formula I through a ring-opening reaction, and then 2 '- hydroxyl forming a leaving group, and then after a nitrile group or a fluorinated reaction, the final deprotection reaction of 2'-deoxy-2'-fluoro-2'-substituted uridine or 2'-deoxy-2'- cytidine or 2'-fluoro-2'-substituted-2'-deoxy-2'-nitrile-substituted uridine or 2'-deoxy-2'-substituted-2'-cytidine nitrile compound.

It is therefore an object of the present invention is to provide a compound of the general formula I prepared 2'-deoxy-2'-fluoro-2'-substituted uridine or 2'-deoxy-2'-fluoro-2'-substituted cytidine or 2'-substituted-2'-deoxy-2'-carbonitrile uridine or 2'-deoxy-2'-substituted-2'-carbonitrile The method of cytidine compound.

Example 1:


The 2'-C- methyl uridine (18.4g, 0.07mol), N, N'- carbonyldiimidazole (216.2g, 0.10mol), sodium bicarbonate (8.4g, 0.10mol) was suspended N, N- two dimethylformamide (50ml), the temperature was raised to 130 ℃, reaction for 4 hours, cooled and filtered to remove inorganic salts, the filtrate was added ethyl acetate (200ml), analyze the material at room temperature, suction filtered, washed with ethyl acetate cooled to, drying to give a yellow solid (19.9g, yield: 83%).

Ia: 1 H NMR (300 MHz, CD 3 OD): [delta] 7.80 (d, 1H, J = 7.5 Hz), 6.05 (d, 1H, J = 7.5 Hz), 5.91 (s, 1H), 4.34 (d, 1H, J = 4.8Hz), 4.07 (m, 1H), 3.56 (m, 2H), 1.63 (s, 3H); ESI-MS m / z (M + 1) 241.

Example 2:


The compound of Example 1 Ia (0.24g, 1mmol)) was dissolved in 70% HF in pyridine was heated to 140 ~ 150 ℃, stirred for 3 hours, cooled and the solvent was removed under reduced pressure, the residue was added acetone, beating, and filtered to give solid (0.18g, yield: 70%).
IIIa: 1 H NMR (300 MHz, DMSO-d 6 ): [delta] 11.48 (s, 1H), 7.82 (d, 1H, J = 6.0 Hz), 6.00 (d, 1H, J = 15.6 Hz), 5.67 (m , 2H), 5.30 (s, 1H), 3.85 (m, 3H), 3.62 (s, 1H), 1.25 (d, 3H, J = 16.8Hz), ESI-MS m / z (M-1) 259.
Example 3:


Compound Ib (0.45g, 1mmol) was dissolved in a mixture of dichloromethane and pyridine, was added DAST (0.32g), stirred for 24 hours, added dichloromethane (20ml) was diluted with water (30ml × 2), dried over anhydrous dried over sodium sulfate, filtered and the solvent removed under reduced pressure to give the residue was subjected to column chromatography to give the product (0.36g, yield: 78%).

IIa: 1 H NMR (400 MHz, CDCl 3 and DMSO-d 6 ): [delta] 7.99 (d, J = 7.6 Hz, 2H), 7.90 (d, J = 7.6 Hz, 2H), 7.34 ~ 7.61 (m, 7H ), 6.10 (brs, 1H), 5.64 (brs, 1H), 5.42 (d, J = 8.0Hz, 1H), 4.53-4.68 (m, 3H), 1.40 (d, J = 22.8Hz, 3H); ESI -MS m / z (M + 1) 469.

Example 4:


The compound of Example 3 IIa (0.47g, 1mmol) dissolved in 10% methanol solution of ammonia and stirred overnight, the solvent was removed under reduced pressure, and the residue was slurried in ethyl acetate, filtered to give a white solid (0.2g, yield : 77%).

IIIa: 1 H NMR (300 MHz, DMSO-d 6 ): [delta] 11.48 (s, 1H), 7.82 (d, 1H, J = 6.0 Hz), 6.00 (d, 1H, J = 15.6 Hz), 5.67 (m , 2H), 5.30 (s, 1H), 3.85 (m, 3H), 3.62 (s, 1H), 1.25 (d, 3H, J = 16.8Hz), ESI-MS m / z (M-1) 259.

Example 5:


Compound IVa (0.57g, 1mmol) was dissolved in dichloroethane (20ml) was added trifluoromethanesulfonic acid trimethylsilyl ester (1ml), was heated for 12 hours, cooled, and the reaction solution was concentrated dryness, added two dichloromethane (100ml) was dissolved, washed successively with water (50ml) and saturated brine (50ml), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated to dryness to give an oil which was purified by column chromatography to give a white solid (0.3g, yield : 67%).

Ib: 1 H NMR (300 MHz, CDCl 3 ): δ7.96-8.10 (m, 6H), 7.41-7.65 (m, 9H), 7.32 (d, 1H, J = 5.4 Hz), 6.09 (d, 1H, J = 5.4Hz), 5.79 (m, 2H), 4.67 (m, 1H), 4.48 (m, 2H), 1.81 (s, 3H); ESI-MS m / z (M-1) 447.

Example 6:


N The compound of Example 1 Ia (1.3g, 5.4mmol) dissolved in dry, N- dimethylformamide (10ml) was added p-toluenesulfonic acid monohydrate (1.12g, 5.9mmol) and 3,4- dihydropyran (1.28ml, 14.04mmol), The reaction was stirred for 5 hours at room temperature, water was added and the methylene chloride solution was separated, the organic layer was concentrated and purified by silica gel chromatography to give the product 1.3g.

Ic: 1 H NMR (300 MHz, CDCl 3 ): [delta] 7.29 (m, 1H), 6.08 (m, 1H), 5.61 (m, 1H), 4.33-4.72 (m, 4H), 3.37-3.90 (m, 6H), 1.43-1.82 (m, 12H), 1.25 (s, 3H); ESI-MS m / z (M + 1) 427.
Example 7:


The solvent was removed, the residue was purified compound of Example 6 Ic (0.43g, 1mmol) was dissolved in 70% HF in pyridine was heated to 100 ~ 120 ℃, stirred for 5 hours, cooled, reduced pressure was purified through silica gel column to give a solid ( 0.18g, yield: 72%).

IIIa: 1 H NMR (300 MHz, DMSO-d 6 ): [delta] 11.48 (s, 1H), 7.82 (d, 1H, J = 6.0 Hz), 6.00 (d, 1H, J = 15.6 Hz), 5.67 (m , 2H), 5.30 (s, 1H), 3.85 (m, 3H), 3.62 (s, 1H), 1.25 (d, 3H, J = 16.8Hz), ESI-MS m / z (M-1) 259.
Example 8:


The compound of Example 6 Ic (50mg, 0.122mmol) was dissolved in methanol (1ml) was added 1N sodium hydroxide solution (0.2ml), stirred at room temperature overnight, water was added and the methylene chloride solution was separated, the organic layer was concentrated after purified by column chromatography to give the product (45mg, yield: 87%).

VA: 1 H NMR (300 MHz, CDCl 3 ): [delta] 7.89 (d, 1H, J = 4.5Hz), 6.01 (s, 1H), 5.95 (d, 1H, J = 4.5Hz), 5.65 (m, 2H ), 4.73 (m, 3H), 4.59 (m, 1H), 3.52-4.30 (m, 4H), 1.56-1.80 (m, 12H), 1.32 (s, 3H); ESI-MS m / z (M + 35) 461.

Example 9:


The mixture of Example 8 Compound Va (0.43g, 1mmol) was dissolved in dichloromethane and pyridine, was added DAST (0.32g), stirred for 24 hours, added dichloromethane (20ml) was diluted with water (30ml × 2) and washed , dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain compound IIb. Compound IIb is dissolved in methanol (10ml) was added p-toluenesulfonic acid (200mg), stirred for 6 hours at room temperature, the methanol was removed under reduced pressure, silica gel column chromatography to give the product IIIa (180mg, yield: 75%).

IIIa: 1 H NMR (300 MHz, DMSO-d 6 ): [delta] 11.48 (s, 1H), 7.82 (d, 1H, J = 6.0 Hz), 6.00 (d, 1H, J = 15.6 Hz), 5.67 (m , 2H), 5.30 (s, 1H), 3.85 (m, 3H), 3.62 (s, 1H), 1.25 (d, 3H, J = 16.8Hz), ESI-MS m / z (M-1) 259.

Example 10:


The 2'-C- methyl uridine (0.2g, 0.8mmol) was dissolved in N, N- dimethylformamide (4ml) was added N, N'- carbonyldiimidazole (0.194g, 1.2mmol) and sodium bicarbonate (55mg, 0.66mmol), was heated to 130 ℃, stirred for 4 hours, cooled and the solvent was removed under reduced pressure, and the residue was dissolved in 70% HF in pyridine was heated to 140 ~ 150 ℃, stirred for 3 hours, cooled, The solvent was removed under reduced pressure, the residue was added to acetone and filtered to obtain a solid IIIa (0.12g, yield: 60%).

Example 11:


The 2'-C- methyl uridine (0.2g, 0.8mmol) was dissolved in N, N- dimethylformamide (4ml) was added diphenyl carbonate (0.256g, 1.2mmol) and sodium bicarbonate ( 55mg, 0.66mmol), was heated to 150 ℃, stirred for 6 hours, cooled and the solvent was removed under reduced pressure, and the residue was dissolved in 70% HF in pyridine was heated to 140 ~ 150 ℃, stirred for 3 hours, cooled and the solvent was removed under reduced pressure The residue was added to acetone and filtered to obtain a solid IIIa (0.13g, yield: 65%).
Example 12:


Under nitrogen, the compound of Example 9 Example Va (4.26g, 10mmol) was dissolved in dry tetrahydrofuran (100ml) was added triethylamine (6g, 60mmol), cooled to -78 ℃, was added trifluoromethanesulfonic anhydride (4.23g , 15mmol), stirred for 1 hour, the reaction system was added saturated ammonium chloride solution, extracted three times with methylene chloride, organic phases were combined, dried over anhydrous sodium sulfate, concentrated, and the residue was subjected to silica gel column chromatography to give the product Vb ( 4g, yield: 72%). ESI-MS m / z (M-1) 557.

Compound Vb (4g) was dissolved in dry tetrahydrofuran, was added tetrabutylammonium fluoride (1.87g, 7.1mmol), warmed to reflux, cooled to room temperature after heating for 1 hour, water was added to the reaction system, and extracted with methylene chloride three times, the combined organic phase was dried over anhydrous sodium sulfate, concentrated, and the residue was subjected to silica gel column chromatography to give the product IIb (2.7g, yield: 88%). ESI-MS m / z (M-1) 427.

Compound IIb (2.7g) was dissolved in methanol (20ml) was added 3M hydrochloric acid (10ml), 50 ℃ stirred for 8 hours, and concentrated to give a solid, was added acetonitrile, beating, and filtered to give the product IIIa (1g, yield: 61%).
IIIa: 1 H NMR (300 MHz, DMSO-d 6 ): [delta] 11.48 (s, 1H), 7.82 (d, 1H, J = 6.0 Hz), 6.00 (d, 1H, J = 15.6 Hz), 5.67 (m , 2H), 5.30 (s, 1H), 3.85 (m, 3H), 3.62 (s, 1H), 1.25 (d, 3H, J = 16.8Hz), ESI-MS m / z (M-1) 259.










////////////////

Thursday 9 July 2015

Sofosbuvir new patent...WO 2015097605, Mylan


Sofosbuvir.svg
 WO 2015097605

 Mylan Laboratories Ltd.
 Process for the preparation of sofosbuvir

 02 July 2015

The present disclosure relates to processes for the preparation of sofosbuvir or of its pharmaceutically acceptable salts. The present disclosure also provides intermediates useful in the synthesis of sofosbuvir.

Kaushik, Vipin Kumar; Vakiti, Srinivas; Ravi, Vijaya Krishna; Tirumalaraju, Bhavanisankar

Nucleoside phosphoramidates are inhibitors of RNA-dependent RNA viral replication and are useful as inhibitors of HCV NS5B polymerase, as inhibitors of HCV replication and for treatment of hepatitis C infection in mammals.
 Sofosbuvir (PSI-7977) is a nucleotide analog inhibitor of HCV NS5B polymerase, which is developed by Pharmasset and used for the treatment of chronic hepatitis C (CHC) infection as a component of a combination antiviral treatment regimen. SOVALDI® tablets contain sofosbuvir, which is chemically named as (S)-Isopropyl 2-((S)-(((2R,3R,4R,5R)-5-(2,4-dioxo3,4-dihydropyrimidin-l(2H)-yl)-4-fluoro-3-hydroxy-4-methyltetrahydrofuran-2yl)methoxy)-(phenoxy)phosphorylamino) propanoate and is represented by the following chemical structure:



 

 Formula-1 Sofosbuvir and a process for the preparation are disclosed in U.S. Patent No. 7,964,580 B2 and PCT Publication No. WO 2008/121634 A2, which are hereby incorporated by reference. The present disclosure provides a novel process for the preparation of sofosbuvir or its pharmaceutically acceptable salts that employs novel intermediates.


 SUMMARY OF THE DISCLOSURE
A first aspect of the present disclosure is to provide a process for the preparation of sofosbuvir or its pharmaceutically acceptable salts. In one embodiment, the present disclosure provides a process for the preparation of sofosbuvir or its pharmaceutically acceptable salts that includes the steps of: a) reacting the compound of formula 4 with a compound of formula 5 to get a compound of formula 3;

 

4 b) hydrolyzing the compound of formula 3 to get a compound of formula 2; and



 

 3 2 c) optionally deprotecting the compound of formula 2 to get sofosbuvir of formula 1 or its pharmaceutically acceptable salts.




 



1 2 wherein R is hydrogen or any hydroxy protecting group and X is a leaving group such as tosylate, camphorsulfonate, mesylate, trifluoroacetate, trifluorosulfonate, an aryloxide, heteroaryl oxide or an aryloxide or heteroaryl oxide substituted with at least one electron-withdrawing group. In another embodiment, the present disclosure provides a novel intermediate of formula 3a.



In an additional embodiment, the present disclosure provides a crystalline compound of formula 3a, which is characterized by a powdered X-ray diffraction pattern as shown in Figure 1. In September 2014, Gilead entered into non-exclusive licensing agreements with various generic companies (including Mylan) to manufacture and supply generic sofosbuvir. In April 2015, Mylan launched its generic version of the drug as MyHep, in India


 scheme-II.

 Sofosbuvir Scheme-II In another embodiment the present disclosure provides a process for the preparation of sofosbuvir as shown in below


scheme-Ill.

 Example 3: Preparation of sofosbuvir (formula 1). N-Benzoyl Sofosbuvir (6 g) was added to 70% w/w aqueous acetic acid (90 mL) and the contents were stirred at 90-95 °C. After completion of the reaction, which was monitored by qualitative HPLC, the reaction mass was cooled to ambient temperature, diluted with water and filtered through a Hyflo filter.

Thereafter, obtained filtrate was extracted with ethyl acetate which was further washed with ~4%w/w aqueous hydrochloric acid followed by ~9%w/w aqueous sodium carbonate solution. Finally, the ethyl acetate layer was washed with water and dried.

The dried layer was concentrated under reduced pressure at 60-65 °C. Thereafter, the concentrated mass was dissolved in a mixture of 5% isopropanol in methylene dichloride and isopropyl ether was added to precipitate the product. After stirring at 0-5 °C for 2 hours, the product was filtered, washed with methylene dichloride/isopropyl ether mixture, which was recrystallized with methylene dichloride/isopropyl ether mixture to yield sofosbuvir as white crystals (3 g)......https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015097605&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription



Mylan launches Sovaldi tablets in India

Sovaldi is indicated for the treatment of chronic hepatitis-C infection as a component of a combination antiviral treatment




Pharma giant Mylan NV today said its subsidiary Mylan Pharmaceuticals has launched Gilead Sciences' Sovaldi (sofosbuvir 400mg tablets) in the country.

Sovaldi is indicated for the treatment of chronic hepatitis-C infection as a component of a combination antiviral treatment.

It is estimated that around 12 million people are chronically infected with hepatitis-C in India, Mylan said in a release.

In February this year, Gilead appointed Mylan as its exclusive distributor of Sovaldi in India.

Mylan president Rajiv Malik said they have a history of partnering with Gilead to tackle key public health issues in India and around the world, beginning with expanding access to high quality and affordable HIV/AIDS antiretrovirals.

"We are proud to continue our work together with the launch of Sovaldi as it supports our joint commitment to meeting the unmet medical needs of patients in India," Malik said.

Gregg Alton, Executive Vice-President, Corporate and Medical Affairs, Gilead Sciences said it makes an important milestone in the company's ongoing effort to make its hepatitis-C medicines accessible to as many patients, in as many places, as quickly as possible.Sovaldi is sold by Mylan's dedicated sales force as part of its Hepato Care segment.

,,,,,,,,,,



DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE



Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK
Join me on twitterFollow amcrasto on Twitter     
Join me on google plus Googleplus

 amcrasto@gmail.com

09b37-misc2b027LIONEL MY SON
He was only in first standard in school when I was hit by a deadly one in a million spine stroke called acute transverse mylitis, it made me 90% paralysed and bound to a wheel chair, Now I keep him as my source of inspiration and helping millions, thanks to millions of my readers who keep me going and help me to keep my son happy