Thursday 7 May 2015

WO 2015059679 New patent on Eliglustat by Dr Reddys

WO-2015059679

 
Eliglustat tartrate (Genz-1 12638) is a glucocerebroside (glucosylceramide) synthase inhibitor for the treatment of gaucher disease and other lysosomal storage disorders, which is currently under development.
Eliglustat is chemically known as 1 R, 2R-Octanoic acid [2-(2', 3'-dihydro-benzo [1 , 4] dioxin-6'-yl)-2-hydroxy-1 -pyrrolidin-1 -ylmethyl]-ethyl]-amide, having a structural formula I depicted here under.
Formula I
Eliglustat hemitartrate (Genz-1 12638) development by Genzyme, is a glucocerebroside (glucosylceramide) synthase inhibitor for the treatment of Gaucher disease and other lysosomal storage disorders. Eliglustat hemitartrate is orally active with potent effects on the primary identified molecular target for type 1 Gaucher disease and other glycosphingolipidoses, appears likely to fulfill high expectations for clinical efficacy. 

Gaucher disease belongs to the class of lysosomal diseases known as glycosphingolipidoses, which result directly or indirectly from the accumulation of glycosphingolipids, many hundreds of which are derived from glucocerebroside. The first step in glycosphingolipid biosynthesis is the formation of glucocerebroside, the primary storage molecule in Gaucher disease, via glucocerebroside synthase (uridine diphosphate [UDP] - glucosylceramide glucosyl transferase). Eliglustat hemitartrate is based on improved inhibitors of glucocerebroside synthase.

U.S. patent No. 7,196,205 (herein described as US'205) discloses a process for the preparation of eliglustat or a pharmaceutically acceptable salt thereof. In this patent, eliglustat was synthesized via a seven-step process involving steps in that sequence: 
(i) coupling S-(+)-2-phenyl glycinol with phenyl bromoacetate followed by column chromatography for purification of the resulting intermediate, 
(ii) reacting the resulting (5S)-5-phenylmorpholin-2-one with 1 , 4-benzodioxan-6-carboxaldehyde to obtain a lactone, 
(iii) opening the lactone of the oxazolo-oxazinone cyclo adduct via reaction with pyrrolidine, 
(iv) hydrolyzing the oxazolidine ring, (v) reducing the amide to amine to obtain sphingosine like compound, (vi) reacting the resulting amine with octanoic acid and N-hydroxysuccinimide to obtain crude eliglustat, (vii) purifying the crude eliglustat by repeated isolation for four times from a mixture of ethyl acetate and n-heptane.

U.S. patent No. 6855830, 7265228, 7615573, 7763738, 8138353, U.S. patent application publication No. 2012/296088 disclose processes for preparation of eliglustat and intermediates thereof.

U.S. patent application publication No. 2013/137743 discloses (i) a hemitartrate salt of eliglustat, (ii) a hemitartrate salt of eliglustat, wherein at least 70% by weight of the salt is crystalline, (iii) a hemitartrate salt of Eliglustat, wherein at least 99% by weight of the salt is in a single crystalline form.

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=234E6BE008E68831F6875FB703760826.wapp2nA?docId=WO2015059679&recNum=1&office=&queryString=FP%3A%28dr.+reddy%27s%29&prevFilter=%26fq%3DCTR%3AWO&sortOption=Pub+Date+Desc&maxRec=364


http://newdrugapprovals.org/2015/05/08/eliglustat/



WO-2015059679
Enhanced
Process for the preparation of eliglustat free base - comprising the reaction of S-(+)-phenyl glycinol with phenyl-alpha-bromoacetate to obtain 5-phenylmorpholin-2-one, which is further converted to eliglustat.



Dr Reddy's Laboratories Ltd




New crystalline eliglustat free base Form R1 and a process for its preparation are claimed. Also claimed is a process for the preparation of eliglustat free base which comprises the reaction of S-(+)-phenyl glycinol with phenyl-alpha-bromoacetate to obtain 5-phenylmorpholin-2-one, which is further converted to eliglustat. 

Further eliglustat oxalate, its crystalline form, and a process for the preparation of crystalline eliglustat oxalate, are claimed.

Formula II






http://newdrugapprovals.org/2015/05/08/eliglustat/



Example 1 : Preparation of 5-phenyl morpholine-2-one hydrochloride
To a (S) + phenyl glycinol (100g) add N, N-diisopropylethylamine (314ml) and acetonitrile (2000ml) under nitrogen atmosphere at room temperature. It was cooled to 10- 15° C. Phenyl bromoacetate (172.4g) dissolved in acetonitrile (500ml) was added to the above solution at 15° C over a period of 30 min. The reaction mixture is allowed to room temperature and stirred for 16-20h. Progress of the reaction was monitored by thin layer chromatography. After completion of the reaction, the reaction mixture was concentrated under reduced pressure at a water bath
temperature less than 25° C to get a residue. The residue was dissolved in ethyl acetate (1000ml) and stirred for 1 h at 15-20°C to obtain a white solid. The solid material obtained was filtered and washed with ethyl acetate (200ml). The filtrate was dried over anhydrous sodium sulphate (20g) and concentrated under reduced pressure at a water bath temperature less than 25° C to give crude compound (1000g) as brown syrup. The Crude brown syrup is converted to HCI salt by using HCI in ethyl acetate to afford 5-phenyl morpholine-2-one hydrochloride (44g) as a white solid. Yield: 50%, Mass: m/z = 177.6; HPLC (% Area Method): 90.5%


Example 2: Preparation of (1 R,3S,5S,8aS)-1 ,3-Bis-(2',3'-dihydro-benzo[1 ,4] dioxin-6'-yl)-5-phenyl-tetrahydro-oxazolo[4,3-c][1 ,4]oxazin-8-one.
5-phenyl morpholine-2-one hydrochloride (100g) obtained from above stage 1 is dissolved in toluene (2500ml) under nitrogen atmosphere at 25-30°C. 1 ,4-benzodioxane-6-carboxaldehyde (185.3g) and sodium sulphate (400g) was added to the above solution and the reaction mixture was heated at 100-105°C for 72h. Progress of the reaction was monitored by thin layer chromatography. After completion of reaction, the reaction mixture was concentrated under reduced pressure at a water bath temperature less than 25° C to get a residue. The residue was cooled to 10°C, ethyl acetate (2700ml) and 50% sodium bisulphate solution (1351 ml) was added to the residue and stirred for 1 h at 10°C to obtain a white solid. The obtained white solid was filtered and washed with ethyl acetate. The separated ethyl acetate layer was washed with water (1000ml), brine (1000ml) and dried over anhydrous sodium sulphate. The organic layer was concentrated under reduced pressure at a water bath temperature of 45-50°C to get a crude material. The obtained crude material is triturated with diethyl ether (1500ml) to get a solid material which is filtered and dried under vacuum at room temperature for 2-3h to afford (1 R,3S,5S,8aS)-1 ,3-Bis-(2',3'-dihydro-benzo[1 ,4]dioxin-6'-yl)-5-phenyl-tetrahydro-oxazolo[4,3-c][1 ,4]oxazin-8-one (148g) as a yellow solid. Yield: 54%, Mass: m/z = 487.7; HPLC (% Area Method): 95.4 %

Example 3: Preparation of (2S,3R,1 "S)-3-(2',3'-(Dihydro-benzo[1 ,4]dioxin-6'-yl)-3-hydroxy-2-(2"-hydroxy-1 ''^henyl-ethy^
(1 R,3S,5S,8aS)-1 !3-Bis-(2'!3'-dihydro-benzo[1 ,4]dioxin-6'-yl)-5-phenyl-tetrahydro-oxazolo[4,3-c][1 ,4]oxazin-8-one (70g) obtained from above stage 2 was dissolved in chloroform (1400ml) at room temperature. It was cooled to 0-5°C and pyrrolidone (59.5ml) was added at 0-5°C over a period of 30 minutes. The reaction mixture was allowed to room temperature and stirred for 16-18h. Progress of the reaction was monitored by thin layer chromatography. After completion of reaction, the reaction mixture was concentrated under reduced pressure at a water bath temperature of 40-45°C to obtain a crude. The obtained crude was dissolved in methanol (1190ml) and 1 N HCI (1 190ml) at 10-15° C, stirred for 10 minutes and heated at 80-85°C for 7h. Progress of the reaction was monitored by thin layer chromatography. After completion of reaction, methanol was concentrated under reduced pressure at a water bath temperature of 50-55°C.The aqueous layer was extracted with ethyl acetate and the organic layer was washed with 1 N HCI (50ml). The aqueous layer was basified with saturated sodium bicarbonate solution up to pH 8-9 and extracted with ethyl acetate (3x70ml). The combined organic layers was washed with brine (100ml), dried over anhydrous sodium sulphate and concentrated under reduced pressure at a water bath temperature of 50-55°C to afford (2S,3R,1"S)-3-(2',3'-(Dihydro-benzo[1 ,4]dioxin-6'-yl)-3-hydroxy-2-(2"-hydroxy-1 "-phenyl-ethylamino)-1 -pyrrolidin-1 -yl-propan-1 -one (53g) as a yellow foamy solid. Yield: 90%, Mass: m/z = 412.7, HPLC (% Area Method): 85.1 %

Example 4: Preparation of (1 R,2R,1 "S)-1-(2',3'-(Dihydro-benzo[1 ,4]dioxin-6'-yl)2-hydroxy-2-(2"-hydroxy-1 '-phenyl-ethylamino)-3-pyrrolidin-1-yl-propan-1-ol.
(2S,3R,1 "S)-3-(2',3'-(Dihydro-benzo[1 ,4]dioxin-6'-yl)-3-hydroxy-2-(2"-hydroxy-1 "-phenyl-ethylamino)-1 -pyrrolidin-1 -yl-propan-1 -one (2.5g) obtained from above stage 3 dissolved in Tetrahydrofuran (106ml) was added to a solution of Lithium aluminium hydride (12.2g) in tetrahydrofuran (795ml) at 0°C and the reaction mixture was heated at 60-65°C for 10h. Progress of the reaction was monitored by thin layer chromatography. After completion of reaction, the reaction mixture was cooled to 5- 10°C and quenched in saturated sodium sulphate solution (100ml) at 5-10°C. Ethyl acetate was added to the reaction mass and stirred for 30-45 min. The obtained solid is filtered through celite bed and washed with ethyl acetate. Filtrate was dried over anhydrous sodium sulphate and concentrated under reduced pressure at a water bath temperature of 50°C to afford (1 R,2R, 1"S)-1 -(2',3'-(Dihydro-benzo[1 ,4]dioxin-6'-yl)2-hydroxy-2-(2"-hydroxy-1 '-phenyl-ethylamino)-3-pyrrolidin-1 -yl-propan-1 -ol (43.51 g) as a yellow gummy liquid. The crude is used for the next step without further purification. Yield: 85%, Mass: m/z = 398.7, HPLC (% Area Method): 77 %


Example 5: Preparation of (1 R, 2R)-2-Amino-1-(2', 3'-dihydro-benzo [1 , 4] dioxin-6'-yl)-3-pyrrolidin-1 -yl-propan-1 -ol.
(1 R,2R,1 "S)-1 -(2',3'-(Dihydro-benzo[1 ,4]dioxin-6'-yl)2-hydroxy-2-(2"-hydroxy-1 '-phenyl-ethylamino)-3-pyrrolidin-1 -yl-propan-1 -ol (40g) obtained from above stage 4 was dissolved in methanol (400ml) at room temperature in a 2L hydrogenation flask. Trifluoroacetic acid (15.5ml) and 20% Pd (OH) 2 (40g) was added to the above solution under nitrogen atmosphere. The reaction mixture was hydrogenated under H2, 10Opsi for 16-18h at room temperature. Progress of the reaction was monitored by thin layer chromatography. After completion of reaction, the reaction mixture was filtered through celite bed and washed with methanol (44ml) and water (44ml). Methanol was concentrated under reduced pressure at a water bath temperature of 50-55°C and the aqueous layer was washed with ethyl acetate. The aqueous layer was basified with 10M NaOH till the PH reaches 12-14 and then extracted with dichloromethane (2x125ml). The organic layer was dried over anhydrous sodium sulphate (3gm) and concentrated under reduced pressure at a water bath temperature of 45°C to obtain a gummy liquid. The gummy liquid was triturated with methyl tertiary butyl ether for 1 h to get a white solid, which is filtered and dried under vacuum at room temperature to afford (1 R, 2R)-2-Amino-1 -(2', 3'-dihydro-benzo [1 , 4] dioxin-6'-yl)-3-pyrrolidin-1 -yl-propan-1 -ol (23g) as a white solid. Yield: 82.3%, Mass (m/zj: 278.8, HPLC (% Area Method): 99.5%, Chiral HPLC (% Area Method): 97.9%


Example 6: Preparation of Eliglustat {(1 R, 2R)-Octanoic acid[2-(2',3'-dihydro-benzo [1 , 4] dioxin-6'-yl)-2-hydroxy-1 -pyrrolidin-1-ylmethyl-ethyl]-amide}.
(1 R, 2R)-2-Amino-1 -(2', 3'-dihydro-benzo [1 , 4] dioxin-6'-yl)-3-pyrrolidin-1 -yl-propan-1 -ol (15g) obtained from above stage 5 was dissolved in dry dichloromethane (150ml) at room temperature under nitrogen atmosphere and cooled to 10-15° C. Octanoic acid N-hydroxy succinimide ester (13.0 g)was added to the above reaction mass at 10-15° C and stirred for 15 min. The reaction mixture was stirred at room temperature for 16h-18h. Progress of the reaction was monitored by thin layer chromatography. After completion of reaction, the reaction mixture was cooled to 15°C and diluted with 2M NaOH solution (100 ml_) and stirred for 20 min at 20 °C. The organic layer was separated and washed with 2M sodium hydroxide (3x90ml).The organic layer was dried over anhydrous sodium sulphate (30g) and concentrated under reduced pressure at a water bath temperature of 45°C to give the crude compound (20g).The crude is again dissolved in methyl tertiary butyl ether (25 ml_) and precipitated with Hexane (60ml). It is stirred for 10 min, filtered and dried under vacuum to afford Eliglustat as a white solid (16g). Yield: 74%, Mass (m/zj: 404.7 HPLC (% Area Method): 97.5 %, ELSD (% Area Method): 99.78%, Chiral HPLC (% Area Method): 99.78 %.


Example 7: Preparation of Eliglustat oxalate.
Eliglustat (5g) obtained from above stage 6 is dissolved in Ethyl acetate (5ml) at room temperature under nitrogen atmosphere. Oxalic acid (2.22g) dissolved in ethyl acetate (5ml) was added to the above solution at room temperature and stirred for 14h. White solid observed in the reaction mixture was filtered and dried under vacuum at room temperature for 1 h to afford Eliglustat oxalate as a white solid (4g). Yield: 65.46%, Mass (m/zj: 404.8 [M+H] +> HPLC (% Area Method): 95.52 %, Chiral HPLC (% Area Method): 99.86 %



http://newdrugapprovals.org/2015/05/08/eliglustat/






Tuesday 28 April 2015

Brexpiprazole ブレクスピプラゾール...NEW PATENT WO-2015054976

Brexpiprazole structure.svg
Brexpiprazole
ブレクスピプラゾール
OPC-34712, UNII-2J3YBM1K8C, OPC34712,
CAS 913611-97-9,
Molecular Formula:C25H27N3O2S
Molecular Weight:433.56578 g/mol
7-[4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy]-1H-quinolin-2-one
7-[4-[4-(1-Benzothiophen-4-yl)piperazin-1-yl]butoxy]quinolin-2(1H)-one
2(1H)​-​Quinolinone, 7-​[4-​(4-​benzo[b]​thien-​4-​yl-​1-​piperazinyl)​butoxy]​-
7- [ 4- ( 4-benzo[b]thiophen-4- yl-piperazin-l-yl)butoxy] -lH-quinolin-2-one
7-[4-(4-benzo[b]thiophen-4-yl-piperazin-1-yl)butoxy]-1H-quinolin-2-one
Otsuka Pharma Co Ltd,
OTSUKA ...............INNOVATOR
NDA is considered filed as of September 9, 2014 (60 days after submission). The PDUFA date is July 11, 2015.

 SEE AT http://newdrugapprovals.org/2015/03/23/brexpiprazole/
WO-2015054976  SEE THIS PATENT
AT NEW DRUG APPROVALS BLOG

SUZHOU VIGONVITA LIFE SCIENCES CO., LTD.














DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK
Join me on twitterFollow amcrasto on Twitter     
Join me on google plus Googleplus

 amcrasto@gmail.com




vietnam

Map of vietnam country.


 Image result for vietnam



 
 

 
 

 

 dalat city
hanoi











 

Thursday 16 April 2015

Thursday 9 April 2015

HEARD OF F-SOFOSBUVIR...CN103848877A


Figure CN103848877AD00083
F SOFOSBUVIR

1613739-48-2
L-​Alanine, N-​[[P(S)​,​2'R]​-​2'-​deoxy-​2',​5-​difluoro-​2'-​methyl-​P-​phenyl-​5'-​uridylyl]​-​, 1-​methylethyl ester
C22 H28 F2 N3 O9 P, 547.44

http://www.google.com/patents/CN103848877A?cl=en


Preparation of Comparative Example II of the compound of formula I
The present invention with reference to US20110251152A1 (Example 1) Preparation of the technical contents disclosed to give a compound of formula II.

Figure CN103848877AD00071
 Î´ (1HNMR, DMS0_d6): 1.25 (d, J = 22.4Hz, 3H), 3.64 (m, 1H), 3.83 (m, 3H), 5.27 (m, 1H), 5.64 (m, 1H), 5.66 (m, 1H), 5.97 (d, J = 18.8Hz, 1H), 9.96 (d, J = 8.0Hz, 1H), 11.45 (s, lH) ppm; δ (19FNMR, DMS0-d6): - 159.9 (s) ppm; MS: 261 (MH +) o
 The preparation of the usual 2Sofosbuvir
The present invention with reference to US20110251152A1 (Example 10_7) Preparation of the technical contents disclosed in the Sofosbuvir.

Figure CN103848877AD00081
 Î´ (1HMlR, DMS0_d6): 1.15 (d, J = 6.0Hz, 6H), 1.22 (d, J = 6.4Hz, 3H), 1.25 (d, J = 22.3Hz, 3H), 3.80-4.00 ( m, 3H), 4.11 (m, 1H), 4.42 (m, 1H), 4.52 (m, 1H), 5.00 (m, 1H), 5.30 (d, J = 8.0Hz, 1H), 6.20 (m, 1H ), 7.10-7.30 (m, 3H), 7.30-7.35 (m, 2H), 7.46 (d, J = 8.2Hz, 1H), 11.45 (s, 1H) ppm; δ (19MMR, DMS0_d6): - 161.68 ( s) ppm; δ (31PNMR, DMS0-d6): 3.35 (s) ppm; MS: 530 (MH +) o
Preparation of Comparative Example 3 Compound of Formula III
The present invention with reference to Chinese Patent Application CN201310098009.6 (Example 4) Preparation of the technical contents disclosed to give a compound of formula III.

Figure CN103848877AD00082
δ (1HNMR, DMS0_d6): 1.35 (d, J = 22.4Hz, 3H), 3.71 (m, 1H), 3.98 (m, 1H), 4.13 (m, 1H), 4.93 (m, 1H), 5.72 (m, 1H), 6.05 (d, J = 20.4Hz, 1H), 7.76 (d, J = 6.8Hz, 1H), 11.88 (s, lH) ppm; δ (19FNMR, DMS0-d6): - 168.06 (s), -176.03 (s) ppm; MS: 279 (MH +) o
 The preparation of the usual 4F_Sofosbuvir
The present invention with reference to Chinese Patent Application CN201310098009.6 (Example 5) was prepared technical contents disclosed to Ij F-Sofosbuvir0

Figure CN103848877AD00083
δ (1HMlR, DMS0-d6): 1.13 (d, J = 6.0Hz, 6H), 1.22 (d, J = 6.4Hz, 3H), 1.25 (d, J = 22.3Hz, 3H), 3.80- 4.00 (m, 3H), 4.11 (m, 1H), 4.42 (m, 1H), 4.52 (m, 1H), 5.00 (m, 1H), 6.20 (m, 1H), 7.10-7.30 (m, 3H) , 7.30-7.35 (m, 2H), 7.46 (d, J = 8.1Hz, 1H), 11.50 (s, lH) ppm; δ (19FNMR, DMS0-d6): - 161.68 (s), -167.58 (s) ppm; δ (31PNMR, DMS0_d6): 3.35 (s) ppm; MS: 548 (MH +).

Figure CN103848877AD00121



http://www.google.com/patents/CN103848876A?cl=en
A compound of the structure shown in formula I,
Figure CN103848876AC00021
Wherein, X is selected from F, Cl, Br, I of any one.










DHAKA BANGLADESH

.
Steamers and ferries in Sadarghat Port
Kawran Bazar
.
Dry fish sellers at the Karwan Dry Fish Market (Bazar), Dhaka, Bangladesh.

Cadila reports Stable amorphous form of vortioxetine hydrobromide...WO 2015044963



Vortioxetine
O N Sept. 30, 2013 — The U.S. Food and Drug Administration today approved Brintellix (vortioxetine) to treat adults with major depressive disorder. Major depressive disorder (MDD),

Commonly referred to as depression, is a mental disorder characterized by mood changes and other symptoms that interfere with a person’s ability to work, sleep, study, eat and enjoy once-pleasurable activities. Episodes of depression often recur throughout a person’s lifetime, although some may experience a single occurrence.

 READ ALL AT http://www.drugs.com/newdrugs/fda-approves-brintellix-major-depressive-disorder-3918.html


 SYNTHESIS........http://newdrugapprovals.org/2013/10/01/vortioxetine-fda-approves-brintellix-to-treat-major-depressive-disorder/

     

NEW PATENT WO 2015044963 An amorphous vortioxetine and salts thereof Cadila Healthcare Ltd Singh, Kumar Kamlesh; Gajera, Jitendra Maganbhai; Raikwar, Dinesh Kumar; Khera, Brij; Dwivedi, Shri Prakash Dhar
The present invention relates to an amorphous vortioxetine and salts thereof. In particular, the invention relates to a process for the preparation of an amorphous vortioxetine hydrobromide. Further, the invention also relates to a process for preparation of amorphous vortioxetine free base. The invention also relates topharmaceutical compositions comprising an amorphous vortioxetine or hydrobromide salt thereof for oral administration for treatment of major depressive disorder (MDD) and generalized anxiety disorder (GAD).
Stable amorphous form of vortioxetine hydrobromide, useful for treating depression, major depressive disorder (MDD) and generalized anxiety disorder. Also claims a process for preparing the amorphous form and solid dispersions comprising the same.

This API, which was originally developed and launched by Lundbeck and Takeda for treating MDD. A phase IV trial (NCT02357797) for schizophrenia was scheduled to begin in March 2015.
Family members of the product case, WO03029232, hold SPC protection in the EP until 2027 and one of its Orange Book listed filings, US7144884, expire in the US in 2023 with US154 extension.

The US FDA Orange Book also lists patents describing crystalline forms of vortioxetine/Brintellix, US8722684 and US8969355, that are due to expire in 2030 and 2027 respectively. The drug also has NCE exclusivity expiring in September 2018.




Cadila is potentially interested in vortioxetine hydrobromide.    




P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.

COCK WILL TEACH YOU NMR
COCK SAYS MOM CAN TEACH YOU NMR
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE
Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK
Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus
 

amcrasto@gmail.com